Part Number Hot Search : 
UNR4110 CY7C373I 4371F LS7212 HMC128G8 BLE112 BCM3560 GP25G
Product Description
Full Text Search
 

To Download IR3086A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IR3086A data sheet xphas e tm phase ic with ovp, faul t and overtemp detect des cript ion the ir3 086a phase i c co mbined with an ir xphase tm control ic provide s a full featured and flexible way to implement powe r sol u tions for the la test high pe rf orma nce cp us a nd asics. the ?control? ic provid e s overall syste m cont rol an d interfaces wit h any num ber of ?pha se? i c s whi c h e a ch drive a nd m onitor a sin g l e pha se of a m u ltipha se con v erter. th e x p hase tm architecture results in a power supply that is small e r, less expen sive, and ea sier to d e sig n while p r oviding hi gh e r efficien cy than co nventio nal app roa c h e s. feat ure s ? 2.5a average gate drive current ? loss-le ss in ducto r cu rren t sense ? internal indu ctor dcr te m peratu r e com pen sation ? programma bl e phase dela y ? programma bl e feed -fo r ward voltag e mode pwm ramp ? sub 100n s mi nimum pulse width supp orts 1mhz pe r-pha se op erati on ? curre n t sense amplifier dri v es a si n g le wire average curre n t share bus ? curre n t share amplifier re duces p w m ra mp slop e to ensure sha r ing between pha se s ? body bra k in g tm disable s synchrono us mosfet for improv e d tran sient re sp on se and prevent s neg ative output voltag e at converte r turn-off ? ovp comp arator with 15 0 n s re sp on se ? phase f ault dete ction ? programma bl e phase over-temp e rature detectio n ? small thermal l y enhan ced 20l mlpq p a ckag e applicat ion circuit da c rp ha s e 3 ccs + 20 k r b i asi n bi a s cv ccl rcs + ra m p l cp wmrm p rv cc da cin 19 b i asi n 20 rm p i n+ 1 rm p i n- 2 gat e h 14 v cch 15 cs i n - 17 ph sf lt 18 h o t set 3 v rho t 4 sc om p 6 eai n 7 pgn d 13 gat e l 12 lgn d 9 pw m r m p 8 is h a re 5 vc c 10 v ccl 11 cs in+ 16 ir 30 86 a ph as e ic ccs - is ha r e rp wm rm p cs c o m p ea cb s t vo co vr h o t ph ase f a u l t 12v db s t vg at e 5 w i r e a n al o g b u s fr om con t r o l i c cv cc rcs - r p h ase1 rp ha s e 2 cin page 1 of 33 1/ 3 1 /05
IR3086A ordering information dev i c e o r d e r qu antit y ir308 6amtr 3000 p e r reel IR3086Am 100 pie c e stri ps absolute maximum ratings operating ju nction te mpe r ature?? ? ??..150 o c storage te m peratu r e ran ge?? ??? ??.-6 5 o c to 150 o c esd rating ???? ?? ???? ?? ??? hbm cla ss 1 c je dec st anda rd pin # pin name v ma x v mi n i sour ce i sink 1 r m p i n + 2 0 v - 0 . 3 v 1 m a 1 m a 2 r m p i n - 2 0 v - 0 . 3 v 1 m a 1 m a 3 h o t s e t 2 0 v - 0 . 3 v 1 m a 1 m a 4 v r h o t 2 0 v - 0 . 3 v 1 m a 3 0 m a 5 i s h a r e 2 0 v - 0 . 3 v 5 m a 5 m a 6 s c o m p 2 0 v - 0 . 3 v 1 m a 1 m a 7 e a i n 2 0 v - 0 . 3 v 1 m a 1 m a 8 p w m r m p 2 0 v - 0 . 3 v 1 m a 2 0 m a 9 l g n d n / a n / a 5 0 m a n / a 1 0 v c c 2 4 v - 0 . 3 v n / a 5 0 m a 11 vccl 27v -0.3v n/a 3a for 100n s, 200ma dc 12 gatel 27v -0.3v dc, -2 v for 100n s 3a for 100n s, 200ma dc 3a for 100n s, 200ma dc 13 pgnd 0.3v -0.3v 3a for 100n s, 200ma dc n/a 14 gateh 27v -0.3v dc, -2 v for 100n s 3a for 100n s, 200ma dc 3a for 100n s, 200ma dc 15 vcch 27v -0.3v n/a 3a for 100n s, 200ma dc 1 6 c s i n + 2 0 v - 0 . 3 v 1 m a 1 m a 1 7 c s i n - 2 0 v - 0 . 3 v 1 m a 1 m a 1 8 p h s f l t 2 0 v - 0 . 3 v 1 m a 2 0 m a 1 9 d a c i n 2 0 v - 0 . 3 v 1 m a 1 m a 2 0 b i a s i n 2 0 v - 0 . 3 v 1 m a 1 m a page 2 of 33 1/ 3 1 /05
IR3086A electrical specifications unle ss otherwise sp ecifie d, thes e spe c ification s appl y over: 8.4v v cc 14v, 6v v c h c 25v, 6v v ccl 14v, 5.9v v(biasin) 7.1v, 0.8v v(da cin) 1.6v, and 0 o c t j 125 o c, c gat e h = 3.3nf , c gat e l = 6.8n f par a mete r t e s t con d i t i o n m i n t y p max unit gate driv ers gateh ri se time vcch = 12v , measu r e 2v to 9v transitio n time 2 2 5 0 n s gateh fall time vcch = 12v, measu r e 9v to 2v transitio n time 2 2 5 0 n s gatel ri se time vccl = 12v, measu r e 2v to 9v transitio n time 5 0 7 5 n s gatel fall t i me vccl = 12v, measu r e 9v to 2v transitio n time 5 0 7 5 n s gatel low t o gateh hig h delay vcch = vccl = 12v, mea s ure the time from gatel falling to 1v to gateh ris i ng to 1v 1 0 2 5 5 0 n s gateh lo w to gatel hig h delay vcch = vccl = 12v, mea s ure the time from gateh falling to 1v t o gatel ris i ng to 1v 1 0 2 5 5 0 n s disable pull-do wn curren t force gate h or gatel = 2v with biasin = 0v 1 5 2 5 4 0 p a current sense amplifier csin+ bias current -0.5 -0.25 0 p a csin- bia s c u rr ent -1 -0.4 0 p a input offset voltage csin+ = cs i n - = daci n. measure inpu t referred off s e t from dacin - 3 0 . 5 5 m v gain at t j = 2 5 o c 3 2 3 4 3 6 v/v gain at t j = 1 2 5 o c 2 7 2 9 3 1 v/v slew rate curre n t sense amplifier ou tput is an internal n ode. slew rate at the ishare pin will be set by the internal 10k ? resi sto r and a n y stray external cap a cit a nc e 1 2 . 5 v/ p s differential in put ran ge -20 100 mv comm on mo de input ra n ge -0.2 4 v rout at t j = 2 5 o c 7 . 9 1 0 . 5 13.1 k ? rout at t j = 1 2 5 o c 9 . 3 1 2 . 4 15.5 k ? r a mp comparat or input offset voltage 20 40 80 mv hysteresi s note 1 20 40 80 mv rmpin + , rm pin- bias cur r ent -3 -1 1 p a propa gation delay vcch = 12v. measu r e tim e from rmpin inp u t (50mv ove r drive) to gatel tran si tion to <11v. 1 0 0 1 5 0 240 n s percentag e o f common m ode input voltage rang e v(rmpin+) / v(biasin) or v(rmpin-) / v(biasin) 7 7 0 % page 3 of 33 1/ 3 1 /05
IR3086A par a mete r t e s t con d i t i o n m i n t y p max unit ram p dis c h a rge clam p clamp volta g e force i(pwm r mp) = 500 a. measu r e v(pwmrmp) ? v(daci n) - 1 0 5 2 0 m v clamp disch a rge cu rre nt 4 8 ma pwm comparator pwm comparator input offs et voltage - 5 5 1 5 m v eain & pwmrmp bias cu rre nt clamp a nd current share adjust off -1 -0.4 1 a propa gation delay vcch = 12v. measu r e tim e from pwmrmp input (50mv ov erd r ive) to gateh transition to < 11v. 7 0 150 n s comm on mo de input ra n ge exceedin g the comm on m ode inp u t rang e re sult s in 100% duty cycle 5 v share adjust error amplifier input offset voltage 10 20 30 mv input voltage rang e eain ? pwmrmp, note 1 -3.5 3.5 v pwmrmp adjust current 4 8 ma tran scon du c t a n c e i ( p w m r mp) = 3.5m a, not e 1 0.9 1.6 2.3 a/v scomp sou r ce/sink cu rre nt note 1 20 30 40 a scomp activation voltage amount sco m p must increase from its minimum voltage until the ramp slo pe adjust cu rren t equals = 10 a 6 0 1 5 0 300 m v pwmrmp min voltage i(pwm r mp) = 500 a 1 5 0 2 2 5 350 m v bod y braking compar ator thre sh old vo ltage comp are to v(daci n) 88 91 94 % propa gation delay vccl = 12v. measu r e tim e from eain < 0.91 x v(dacin) (2 00mv o v erdrive ) to gatel trans i tion to < 11v. note 1. 1 0 0 150 n s ovp comparator thre sh old vo ltage comp are to v(daci n) 100 125 160 mv propa gation delay vccl = 12v. measu r e tim e from csin > v(daci n) (2 00mv overd r i v e) to gatel transitio n to <11v. 1 5 0 250 n s phase faul t compar ator thre sh old vo ltage comp are to v(daci n) 88 91 94 % output voltag e i(phsflt ) = 4ma 300 400 mv phsflt le a k ag e cu rrent v(phsflt ) = 5.5v 0 10 a vrho t com p arat or hotset bia s cu rr ent -2 -0.5 1 a output voltag e i(vrhot) = 2 9 ma 150 400 mv vrho t lea kage current v(vrhot ) = 5.5v 0 10 a thre sh old hy stere s i s t j ? 85 o c 3 . 0 7 . 0 9 . 0 o c m i n t y p m a x thre sh old vo ltage t j ? 85 o c 4 . 7 3 m v / o c x t j + 1.176v 4.73mv/ o c x t j + 1.241v 4.73mv/ o c x t j + 1.356v v page 4 of 33 1/ 3 1 /05
IR3086A par a mete r t e s t con d i t i o n m i n t y p max unit gener a l vcc sup p ly curre n t 10 14 ma vccl su pply current 2.5 5 ma vcch suppl y current 6v v cch 14v 5.5 8 ma 1 4 v v cch 25v 6.5 10 ma biasin bias current -5 -2.5 2 p a dacin bia s cur r e n t -2 -0.5 1 p a not e 1: gu a r antee d by de sign, but not tested in p r od uction pin des c ription pin# pin symbo l pin descri ption 1 rmpin+ non - inve rting input to ram p comp arator 2 rmpin- inverting inpu t to ramp co mparator 3 hotset inverting inpu t to vrhot compa r ator. conne ct re sist or divide r fro m vbias to lgnd to prog ram v r hot thre sh old. diod e or thermi stor ma y be sub s tituted for lower resi sto r for en han ced/remot e temperature sen s in g. 4 vrho t open colle ct or output of the vrhot co mpa r ator wh ich drive s lo w if ic junction temperature excee d s the us e r program mable limit. conne ct extern al pull-u p . 5 ishare output of the curre n t sense amplifier an d input to the share adju st erro r amplifie r. voltage on thi s pin is e qual to v(daci n) + 34 * [v(cs i n+) ? v(csi n -)]. conn ect i ng ishare pins together crea tes a share bus en abling current sh arin g betwe en ph ase ics. the sha r e bu s is al so used by the control ic for voltage positi oning a nd ov er- curre n t prote c tion. 6 scomp comp en satio n for the cu rrent share co ntrol loop. co nne ct a cap a c itor to groun d to set the co ntro l loop?s b and width. 7 eain pwm co mpa r ator input fro m the error a m plifier of co ntrol ic. both gate driver outputs d r ive low if the voltage on thi s pi n is less than 91% of v(da cin). 8 pwmrmp pwm co mpa r ator ra mp inp u t. conne ct a re si stor from this pin to the converte r inp u t voltage and a capa citor to lgnd to pro g ram the p w m ramp. 9 lgnd signal groun d and ic sub s trate conn ection 10 vcc powe r for internal circuitry 11 vccl powe r for lo w-sid e gate driv e r 12 gatel low-side g a te drive r outp ut and input to gateh no n-ove r lap co mparator 13 pgnd return for gate drivers 14 gateh high -side g a te driver o u tput and inp u t to gatel no n-ove r lap co mparator 15 vcc h powe r for hig h -side g a te driv e r 16 csin+ non - inve rting input to the curre n t sense amplifier 17 csin- inverting inpu t to the curre nt sense am plifier and al so non-i n vertin g input to the ovp comp arator 18 phsflt open colle ct or output of the phase fa ul t compa r ato r . drive s low i f phase curre n t is unabl e to match the level o f the share bus d ue to an external fault. conne ct external pull - up. 19 dacin referen c e vo ltage input fro m the control ic and invert ing input to the ovp comp arator. curre n t sen s i ng and pwm operation referen c e d to this pin. 20 biasin system reference voltage for intern al circuitry page 5 of 33 1/ 3 1 /05
IR3086A syst em theory of operat ion xphase tm ar chitec ture the xphas e tm architectu re is de signe d for multipha se interle a ved buck convert e rs whi c h a r e used i n appl ication s requi rin g sm all si ze, de si gn flexibility, low voltage, high cu rrent and fa st tran sient respon se. the a r chitecture ca n control converters of any pha se number where flexibility fa cilitates the desi gn trade-off of multiphase converters. the scala b le architectu re can be ap plied to other appli c ation s which requi re hig h curre n t or mu ltiple output voltage s. as sho w n i n figure 1, th e xphase tm archite c ture co nsi s ts of a control i c a nd a scal able array of ph ase converte rs each usin g a single pha s e ic. the co ntrol ic com m unicates with the phase ics throug h a 5-wire anal o g bus, i.e. bias voltage, pha se timin g , avera ge cu rr ent, erro r am plifier o u tput, and vid volta ge. th e cont rol ic in co rpo r ates al l the system functio n s, i.e. vid, pwm ramp oscillato r, erro r ampli f ier, bias voltage, and faul t protection s etc. th e phase i c imp l ements th e functio n s req u i r ed by the co nverter of e a c h ph ase, i. e. the gate driv ers, p w m co mparator and latch, over-volta ge protection, an d curre n t sen s i ng and sha r in g. there is no unu sed o r re dund ant silicon with the xphase tm archite c ture co mpared to others su ch a s a 4 phase controlle r tha t can be con f igured for 2, 3, or 4 ph a s e o p e r ation. pcb layo u t is e a si er sin c e the 5 wire bu s eliminate s the need for p o int-to-point wirin g betwe en the control ic and ea ch pha s e. the criti c al ga te drive an d curre n t sen s e conn ectio n s are sho r t and local to the phas e ics. this improv es the pcb layout by lowering th e para s itic in du ctan ce of the gate drive ci rcuits a nd re d u cin g the noi se of the cu rrent sen s e sig nal. rc s cin 0. 1uf 0. 1uf rc s ccs ccs vou t + 12v vou t - vou t se n se- vi d 2 vi d 0 vi d 3 vou t se n se+ vi d 4 en able vr h o t pow e r good ph ase f a u l t vi d 5 vi d 1 >> pwm contr ol >> phase tim ing >> bias volt age ir3081a control ic co ut control bus IR3086A phase ic input/ou tput ad dition al phas es << current s ense ph ase hot ph ase fault ph ase fault >> vid volta ge cu rrent share cu rrent share ph ase hot IR3086A phase ic figure 1. system block di agra m page 6 of 33 1/ 3 1 /05
IR3086A pwm con t ro l method the pwm blo ck diag ram of the xphase tm architectu re is sho w n in f i gure 2. fee d - forward volta ge mo de cont rol with trailing ed ge modulatio n is used. a high -gain wide -ba ndwi d th voltage type error amplifier in the co ntrol ic is use d for the voltag e cont rol loo p . an external rc circuit co nne ct ed to th e input voltag e and g r ou nd is used to progra m the slop e of the pwm ram p and to provide the feed-forward co ntrol at each ph ase. the pwm ramp slope will chang e with the in put voltage an d automatically comp en sate f o r chan ge s in the input volt age. th e inp u t voltage ca n ch ang e due to vari ations i n the sil v er box outp u t voltage or due to the wi re an d pcb - trace voltage drop rel a ted to ch ang e s in load curren t. + - 10 k + - sh ar e ad ju s t er ro r a m p lif ie r cur re nt sen se amp li fie r x34 x 0 .91 2 0mv + - + - + - 10 k sh ar e ad ju s t er ro r a m p lif ie r cur re nt sen se amp li fie r x34 2 0mv x 0 .91 + - + - + - + - + - da ci n p w mr mp bi as i n ra m p i n - ra m p i n + ga t e h sc o m p i s ha re cs in + ga t e l ea i n cs i n - sy st em re fe ren ce vo lt age enab le clo ck pul se gen er ato r body brak ing comp arat or ram p dis ch arg e cla mp pw m la tc h s res et domin ant ph as e ic r pw m c omp ar ato r r drp rp w m rm p rp hs 2 cs co m p + - rp hs 1 + - + - rcs rv f b + - cp w m rm p cs co m p cc s rp w m rm p rcs + - cp w m rm p + - + - cc s rp hs 2 rp hs 1 + - gn d vo u t bi as i n vd ac vb i a s da ci n p w mr mp ra m p i n + vo s n s- vo s n s+ v o sn s- i s ha re ra m p i n - ii n vd r p ea i n ga t e h sc o m p cs i n - cs in + ga t e l ea o u t rm p o ut vi n fb ir os c sy st em re fe ren ce vo lt age vda c body brak ing comp arat or ram p dis ch arg e cla mp enab le clo ck pul se gen er ato r v bia s r egu la tor if b vdr p amp 50% dut y cyc le ra m p g e ne ra t o r vva lley vpe ak e rro r am p r s res et domin ant pw m la tc h ph as e ic cout co nt rol i c pw m c omp ar ato r figure 2. pwm block diag ram freque nc y a nd phase ti ming contro l an oscillator with program m able frequency is located in the control ic. t he ou tput of the oscill ator i s a 50% duty cycle t r ian g le wavefo rm wi th pea k a nd v a lley voltage s of app roxima tely 5v and 1 v re spe c tively. this signal is u s e d to prog ram b o th the switching fre que n c y and p h a s e timi ng of the pha s e ics. the ph ase ic is p r o g rammed by resi sto r divider r phs1 and r phs2 conn ected b e twee n the vbias referen c e voltage and the phase ic l g nd pin. a comp arator i n the phase ics dete c ts t he crossin g of the oscilla tor wavefo rm over the voltage gene rat ed by the resi sto r divid e r a nd t r igg e rs a cl ock pul se that start s t he p w m cycl e. the pea k and vall ey vol t ages tra c k th e vbias voltage re du cing pote n tial phase i c timi ng erro rs. fi g u re 3 sh ows t he pha s e tim i ng for a n 8 p hase convert e r. note that both sl op es of the t r ian g le waveform can be u s e d for pha se timi ng by swa ppi ng the rmpin+ and rmpi n? pi ns, as sho w n in figure 2. page 7 of 33 1/ 3 1 /05
IR3086A ramp (from control ic) clk 1 vva ll ey (1 .0 0v) phase ic clock pulses vph as e1& 8 (1 .5v ) vph as e3& 6 (3 .5v ) vph as e2& 7 (2 .5v ) vph as e4& 5 (4 .5v ) vpe ak (5 .0 v) clk 2 50 % r a m p du ty cy cle clk 3 clk 4 clk 5 clk 6 clk 7 clk 8 sl op e = 8 0mv / % dc sl op e = 1 .6m v / ns @ 200 kh z sl op e = 8 .0m v / ns @ 1mh z figure 3. 8 phase oscillat o r waveform s pwm oper ation the p w m co mparator i s lo cated in the phase ic. upo n re ceivin g a clo c k pul se, t he pwm latch is set; the p w m r m p voltage begi ns to increase; the low side driver i s turned off, and the high side dri v er is then turned on after the non- overlap time. when the p w m r mp voltage exceed s the error a m plifier? s out put voltage, the pwm latch is re set. this tu rn s off the hi gh sid e drive r a nd tu rns on the l o w side drive r after the non -overlap time; it ac tivates the ramp disch a rg e cl amp, which q u ickly di schar ges the p w m r mp cap a cit o r to th e v d ac voltag e of t he control ic until th e next clock pul se. the pwm lat c h is reset dominant allo wi ng all pha se s to go to zero duty cycle wi thin a few tens of nano se cond s in respon se to a load step decrea s e. ph ase s can overlap and go to 100% d u ty cycle in re spo n se to a load ste p increa se with turn -on gate d by the clo c k pul se s. an erro r amplifie r outp u t volta ge g r eate r th an the co mm on mo de input range o f the pwm compa r ator re sults i n 10 0 % duty cycle reg a rdl e ss o f the voltage of the pwm ramp. thi s arrang ement guarantee s the erro r amp lifier is always in cont rol a nd ca n dema nd 0 to 100% duty cycle as req u ire d . i t also f a v o r s re sp on se t o a loa d st ep d e cr ea se w h ic h is a ppropri a te given the low o u tput t o inp u t voltag e ratio of most sy stems. the inducto r current will in cre a se mu ch more rapidly than de crea se in resp on se to load tran sie n ts. this control method is de sign ed to p r o v ide ?sin gle cycle tran sient re sp on se? where the ind u c tor current chang es in respon se to l oad tra n sie n t s within a si ngle switchin g cycle m a ximizing th e effectivene ss o f the powe r train a n d minimizi ng th e output cap a citor re quire ments. an a dditional advantage of the archit e c ture is that diff eren ce s i n grou nd o r inp u t voltage at the pha se s ha ve no effect on operation si nce the p w m ramp s are re feren c ed to v d ac. figure 4 depi cts pwm o p e r ating wavefo rms u nde r variou s co nditio n s. page 8 of 33 1/ 3 1 /05
IR3086A ph ase i c cl ock pu lse eai n vda c pw mrm p ga teh ga tel st ea dy- st at e op er ati on du ty cy cl e i n c rea se du e to lo ad in cr eas e dut y cyc le de cr ea se due t o v i n in cr ea se (fe ed -fo rw ard ) du ty cy cle d ecr ea se du e to lo ad de cre as e ( b o dy br ak ing ) or fa ult (v cc uv , v c c vid u v , oc p, vi d= 111 11 x) st ea dy- st at e op er ati on 91 % v d a c figure 4. pwm operating wavefo rms body braking tm in a conventi onal syn c h r o nou s buck co nver ter, the minimum time requi red to redu ce the current in the indu ctor in respon se to a load step d e c re ase is; o min max slew v i i l t ) ( * ? = the sl ew rate of the ind u ctor cu rrent can be sig n i ficantly incre a se d by turn ing off the synchrono us rectifier in respon se to a loa d step decrea s e. th e switch n o d e vo ltage is then fo rced t o de cr ea se until cond ucti on of th e synchro nou s rectifier? s b ody diode o c curs. this i n crea se s the voltage across the indu ctor fro m vo to vo + v bod y di ode . the minimu m time requi red to re du ce the cu rre nt in the inductor in re spo n s e to a loa d transi ent decrea s e i s n o w; bodydiode o min max slew v v i i l t + ? = ) ( * since th e vol t age d r op i n t he bo dy dio d e is often hi g her th an o u tp ut voltage, th e indu cto r cu rre nt sle w rat e can be increa sed by 2x or more. this patent pendi ng tech nique is referred to as ?bo d y braking tm ? and is acco mplish e d throug h the ?body bra k ing tm comp arat or? lo cated i n the pha s e ic. if the error amplifie r? s output volta ge d r op s belo w 91% of the vdac voltage this co mpar ator turn s off the low side gate drive r . lossles s av erage indu ctor curre nt s e nsing inducto r cu rrent can be se nse d by conn ecting a resi stor and a cap a citor in p a ral l el with the inducto r and m easurin g the voltage a c ro ss the cap a citor, a s sho w n in figu re 5. the equati on of the sen s ing n e two r k i s , cs cs l l cs cs l cs c sr sl r s i c sr s v s v + + = + = 1 ) ( 1 1 ) ( ) ( usually the resi stor rcs a nd capa citor ccs a r e cho s en so that th e time con s tant of rcs a nd ccs eq ual s the tim e con s tant of th e ind u cto r wh ich i s th e ind u ctan ce l over the ind u ct or dcr (r l ). if the two time cons tants matc h, the voltage a c ro ss ccs is prop ortional to th e cu rrent thro ugh l, a nd th e se nse ci rcu i t can b e tre a t ed as if o n ly a se nse resi sto r with the value of r l was u s ed . the mi smat ch of the tim e const ants doe s not affect the m e a s u r eme n t of indu ctor dc current, but affects the a c compon ent of the indu ctor current. page 9 of 33 1/ 3 1 /05
IR3086A v l l r l i v l o r c cs cs c o cu rren t v s c c sense a m p csout figure 5. inductor cu rre nt sens in g and curre n t sense amplifier the advanta ge of sen s in g the indu cto r cu rre nt versu s high side or low si de sen s in g is th at actual out put curre n t being delive r ed to the load is obtaine d rather than pea k or sa m p led inform ation about the switch cu rre nts. the output voltag e ca n be po si tioned to m e et a load line based o n re al time inform ation. except for a sen s e resi stor i n seri es with indu ctor, this is the only sen s e meth o d t hat can suppo rt a sin g le cycle tra n sie n t respo n se. othe r method s provide no inform ation duri ng e i t her load in crease (lo w sid e sen s in g) o r load de crea se (high side sensi ng). an additional proble m associate d with pea k or valle y current mo de co ntrol for voltage posit ioning i s that they suffer from pea k-to -averag e erro rs. the s e e r rors will sh ow in many wa ys but one e x ample is th e effect of freque ncy variation. if the freq uen cy of a particul a r unit is 10 % low, the p eak to p e a k indu ctor curre n t will be 10 % large r and the output im peda nce of the c onverte r will drop by about 1 0 %. variation s in indu ctan ce, current sen s e amplifie r band width, p w m pro p d e l a y, any ad de d sl ope com pen sa tion, i n put voltage, and output v o ltage are all additio nal sou r ces of pe ak-to - ave r ag e errors. current sense amplifier this i s a hig h speed diffe rential cu rren t sen s e ampli f ier, as sho w n in fi gure 5. its gain de creases with i n cre a si ng temperature and is n o mi nally 34 at 25oc and 2 9 at 125oc (-1470 p p m/oc). this redu ction of gain tends to comp en sate t he 3 850 ppm /oc in crea se i n ind u cto r dcr. si n c e in most de sign s the ph ase i c ju nctio n i s hotter th an the ind u cto r t hese two effe cts te nd to cancel su ch th at no additio nal temp erature co mpe n sation of th e l oad li ne i s requi re d. the cu rrent sen s e amplifi e r ca n a c cep t positive differ ential inp u t up to 1 00m v and ne gati v e up to -20 m v befo r e clippi ng. the output of the curre n t se nse amplifier i s su mmed with the da c volta ge and se nt to the co ntrol ic and other pha s e s throug h an o n -chip 1 0 k ? resi sto r co nn ected to the i s hare pi n. the ishare pins of all the phase s are tied to get her an d the voltage on t he sha r e bu s re pre s ent s th e averag e cu rrent bei ng deli v ered to the l oad and i s use d by the control ic for voltage pos iti oning a nd current limit prot ection. av erage cur r ent shar e l oop curre n t sh ari ng bet wee n p hases of the conve r ter i s a c hiev e d by th e avera ge cu rre nt sh are l o op in e a ch phase ic. the o u tput of the current sense am plifie r is compa r ed with the share bu s le ss a 20mv offset. if current in a pha se i s smalle r than the averag e curre n t, the share a d ju st erro r am plifie r of the phase will activate a curre n t sou r ce tha t redu ce s the slope of its pwm ra mp the r eby incre a si ng its duty cycle an d outpu t current. the cro s sover fre quen cy of the curre n t share lo op ca n be pro g ra mmed with a capa cito r at the scomp pin so that the sh are lo o p doe s not intera ct with the output voltage loo p . page 1 0 of 33 1/ 3 1 /05
IR3086A IR3086A t h eory of operat ion block diagra m the block dia g ram of the ir30 86a is sh own in fig. 6, and sp ecifi c feature s a r e di scusse d in the followin g se ction s . vcc vdac b i a s i n s c o m p vdac 20mv ramp slope adjust + - voltage proportional to absolute temperature enable fault comparator + - + - + - + - + - + - + - + - 10k + - + - + - + - + - + - rmpin+ vcc eain rmpin- scomp pwmrmp ishare gateh lgnd biasin pgnd vcch vccl csin+ gatel phsflt vrhot hotset csin- dacin internal circuit bias share adjust error amp clock pulse generator ramp comparator system reference voltage body braking comparator r s dominant pwm comparator reset pwm latch enable ovp comparator 2v x34 current sense amp gate non-overlap comparators x 0.91 125mv ramp discharge clamp vdac + + vrhot comparator figure 6 ? IR3086A blo ck diag ram tri-sta t e ga te driv ers the g a te d r ivers can deliv er u p to 3a pea k current. an ad aptive non -ove rlap circuit m onito rs th e voltag e on th e gateh an d gatel pin s to prevent mo sfet shoot -throu gh curre n t while mini mizing b ody diode con d u c tion. an enabl e si gnal i s provid ed by th e co ntrol ic to th e pha s e i c without the ad dition of a d e d icate d sign a l line. th e erro r amplifie r outp u t of the co ntrol i c drives low in respon se to any fault c o n d ition such a s inp u t und er voltage o r output ove r lo ad. the i r 30 86a body brakin g tm com parato r d e tects this and driv es both gat e output s lo w. this tri - state ope ratio n prevent s ne gative i ndu ctor cu rrent an d negative ou tput voltage during p o wer-d o wn. the g a te dri v ers reve rt to a hig h imp e dan ce ?off? stat e if vccl and v c ch supply voltage s a r e belo w t he no rmal operating ra nge. an 80 k ? resi sto r is con n e c ted across the ga teh/gat e l and pg nd pin s to prevent the gateh/gat e l voltage from risi ng du e to leakag e or other causes under the s e con d ition s . ov er voltage protec tion (ovp) the ir30 86a include s ove r-voltag e prot ection that turns on the low side mosfe t to protect the load in the event o f a sho r ted hi g h -si de mosf et or co nne ction of the co nver ter o u tpu t to an excessive output voltage. a co mparator monitors the voltage at the csin- pi n whi c h is u s u a lly conn ecte d dire ctly to the co nverte r output. if the voltage excee d s the dacin volta ge plu s 125 mv typical (1 00mv minim u m and 1 6 0 m v maximum) the gate l pin drive s high. the o vp circuit ov erri de s the normal pwm operation an d will fully tu rn-on the lo w sid e mos f et within approximatel y 150ns. the low si de mo sfet will re main on u n til the over-volt age conditio n cea s e s . page 1 1 of 33 1/ 3 1 /05
IR3086A whe n de signi ng for ovp t he overall sy stem mu st b e co nsid ered. in many ca ses the ove r -current protect i on of the ac-dc or dc-dc converter supplying t he multiphase converte r will be tri ggered thus prov idi ng effective protection without da ma ge as lo ng a s all pcb traces an d co mp onent s ar e si zed to ha ndle the worst-ca se maximu m curre n t. if this is n o t po ssi ble a fu se can b e ad de d in the input supply to the multipha se converte r. on e scena rio to be ca reful of is whe r e th e input volta g e to the multi pha se conve r ter may be p u lled b e lo w t he level wh ere the i c s ca n provid e adeq uate voltage to the lo w sid e mosf et thus defe a ting ovp. dynami c cha nge s in th e v i d code to a lowe r o u tput volt age may t r igge r ovp. for example; a 25 0mv d e cre a se in output voltag e combin ed with a li ght lo ad conditio n will cau s e th e low si de m o sfets to turn on and i n terfere wit h body bra k ing tm . this will not cause a problem , however, as body braki n g tm will re sume on ce the outp u t voltage i s less than 12 5 m v above the vid voltage. since csin- pin is al so u s ed as th e in ducto r curren t sen s i ng in p u t, it is usual ly conn ecte d to the local conve r ter output, whi c h may be fa r away from the load of the mu ltiph a se conve r te r. excessive distrib u tion impeda nce betwe en the conve r ter and load may trig ger ovp du ri ng no rmal op eration. if the voltage d r o p across th e di stributio n impeda nce e x ceed s the m i nimum ovp comp arator t h re shol d of 1 00mv plu s vid offset an d voltage po sitioning, the ir308 6a can not be u s ed. the i r 30 88 phase ic wit hout ov p sh ould be used instea d in ap plicatio ns wit h excessive distribution i m pedance and very sm all or no avp. for exam ple, a converte r having 25mv of vid offset, 125mv of avp at full lo ad, and 100m v of drop in the distri bution path at full load w ould be ok, since 100mv + 25mv + 125mv = 250mv whi c h is greater than the 100 mv drop. however, a converter hav ing 25mv of vid offset, no avp, and 130mv of dro p in the distri bution path would re quire ir 30 88, sin c e 100mv + 2 5 m v + 0mv = 125mv which is smalle r than the 130 mv drop. conve r ter wi th prog ramm able hig her output voltag e than vid voltage may also trig ger ovp during norma l operation, an d ir308 8 sh o u ld be u s ed t o repla c e ir3 086a. thermal mo nitoring (v rhot ) the ir30 86a sen s e s its own die tempe r ature and p r odu ce s a voltage at the input of the vrhot comp arator that is prop ortio nal t o tempe r atu r e. an extern a l re sisto r di vi der co nne cte d from vbias to the hots et pin a nd g r ound ca n be u s ed to p r ogra m the th ermal tri p poi nt of the vrhot com parator. the v r hot pi n is a n ope n-colle ctor output and sh ould b e pull ed up to a volta ge so urce th rou g h a resi stor. if the the r mal tri p poi nt i s rea c he d the vrhot outp u t drives lo w. phase faul t it is possibl e for multiph a se co nverte rs to appe ar to be wo rking correctly with one o r mo re pha se s not f unctio n ing . the outp u t voltage can still be reg u late d and the full load current may still be delivere d . ho wever, the re maining pha se(s) will be st re ssed f a r b e yond th e i r inten ded de sign li mits a n d are likely to fail. loss of a pha se ca n occur du e to poo r sold er con n e c tio n s or m ounti ng d u rin g th e man u factu r ing p r o c e ss, or can o c cur in the fiel d. the most comm on failu re mod e of a buck convert e r is failu re of the high sid e mosfet. the ir3 086a has th e abili ty to detect if a pha se sto p s sw it chin g and can prov ide this i n formation to the system throug h the phsflt outp u t pin. if a phase sto p s swit chin g its outp u t current will drop to ze ro and the outp u t of th e curre n t sen s e amplifier will be the da cin voltage. th e share ad j u st amplifier react s to this by increa sing the ramp slope adju st current until it exceeds t he externally prog ramm ab le pwm ra mp bias cu rrent. this will cau s e the voltage at the pwmrmp pin to drop b e low its no rm al operat ing range. the fa ult compa r at or trips a nd d r ives the phsflt o u tp ut to grou nd whe n the voltage o n the p w m r mp pin falls belo w 9 1 % of the dacin voltage. phsflt i s an ope n-colle ctor out put an d sho u ld be p u lled up to a voltage so urce throug h a resi stor. page 1 2 of 33 1/ 3 1 /05
IR3086A application information rc s + d bst cb s t rc s + d bst cb s t vg a t e rg a t e dg a t e qg at e rc s + d bst cb s t rv cc 20 k rb i a s i n rdr p cv c c l rp ha s e 3 1 r p h a se6 2 cp w m r m p cv cc ci n cc s + cs c o m p r o c set ci n rc s - cc s - rc s - r p h a se1 3 cp wm rmp ci n rp wm rm p rd rp 1 rv cc cc s + r p h ase 23 cc s + cv cc cp wm r m p rp ha s e 2 1 rc s - 0. 1u f cv c c rv cc da ci n 19 bi a s i n 20 rm p i n + 1 rm p i n - 2 gat e h 14 vc c h 15 cs i n - 17 ph sf l t 18 ho t s e t 3 vr h o t 4 sc om p 6 ea i n 7 pg n d 13 ga t e l 12 lg n d 9 p w mr mp 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic r p h ase 32 0. 1u f cs c o m p rp ha s e 2 2 cs c o m p cc s - 20 k rb i a s i n rp wm rm p cc s - cv c c l cv c c l l cs c o m p da c i n 19 bi a s i n 20 rm p i n + 1 rm p i n - 2 gat e h 14 vc c h 15 cs i n - 17 ph s f l t 18 ho t s e t 3 vr h o t 4 sc o m p 6 eai n 7 pg n d 13 ga t e l 12 lgn d 9 pw m r m p 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic c drp da ci n 19 bi a s i n 20 rm p i n+ 1 rm p i n- 2 ga t e h 14 vc c h 15 cs i n - 17 ph s f lt 18 h o t set 3 vr h o t 4 sc om p 6 ea i n 7 pg n d 13 ga t e l 12 lg n d 9 p w mr mp 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic rp h a s e 3 3 rv cc cv da c cv cc 20 k rb i a s i n rp ha s e 4 2 ccp 1 cc s - rb b f b rcs + rv da c rp wm rm p l cc s - 20 k rb i a s i n ci n r p h a se6 3 rp ha s e 5 2 r s ha re cc s - cc s + l cf b rc s - rf b 10 o h m rv c c cs c o m p r p h a se5 1 cv cc ci n cv cc r p h a se1 2 rc s - 20 k rb i a s i n cp w m r m p da c i n 19 b i asi n 20 rm p i n + 1 rm p i n - 2 gat e h 14 vc c h 15 cs i n - 17 ph sf l t 18 ho t s e t 3 vr h o t 4 sc o m p 6 eai n 7 pg n d 13 ga t e l 12 lgn d 9 p w mr mp 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic cp w m r m p cv c c l ro s c l rf b 1 rp ha s e 4 3 rp ha s e 5 3 rc s + d bst da c i n 19 bi asi n 20 rm p i n + 1 rm p i n - 2 gat e h 14 vc c h 15 cs i n - 17 ph sf l t 18 ho t s e t 3 vr h o t 4 sc o m p 6 ea i n 7 pg n d 13 ga t e l 12 lg n d 9 pw m r m p 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic cc p cb s t rp h a s e 1 1 cc s + rcs + r p h a se4 1 rv cc r p h ase 61 rp wm rm p da c i n 19 bi as i n 20 rm p i n + 1 rm p i n - 2 gat e h 14 vc c h 15 cs i n - 17 ph s f l t 18 ho t s e t 3 vr h o t 4 sc om p 6 ea i n 7 pg n d 13 ga t e l 12 lg n d 9 p w mr mp 8 i s ha re 5 vc c 10 vc c l 11 cs i n + 16 ir 30 86 a ph as e ic cp wm rm p rcp cv cc l rc s - rv cc 20 k rb i a s i n cv c c l l rb b drp rp wm rm p cv c c l os c d s 1 vi d 5 2 vi d 0 3 vi d 1 4 vi d 2 5 vi d 3 6 vi d 4 7 pw r g d 26 trm 1 8 trm 2 9 vos n s- 10 trm 3 11 trm 4 12 vd a c 14 ss / d e l 25 ro s c 13 en a b l e 28 rm p o ut 24 lg n d 23 vc c 22 vb i a s 21 bbf b 20 ea o u t 19 18 fb vd r p 17 ii n 16 oc s e t 15 n/ c 27 ir3 08 1a con tr ol ic c ss/ d e l rp wm rm p ci n cs c o m p cc s + ph as e fau l t vr h o t po w e r g o o d vo u t se n s e- vo u t se n s e+ vo u t + en ab l e vo u t - vi d 4 vi d 0 vi d 5 vi d 2 vi d 1 vi d 3 12 v dis trib utio n imp edan ce cou t rc s + d bst cb s t rc s + d bst cb s t page 1 3 of 33 1/ 3 1 /05 figure 7. ir3081a/ir30 86 a six-phase vrm/evrd 1 0 conve r ter
IR3086A design procedures ? ir308 1a and IR3086A chipset ir308 1a ex tern al co mpone n ts oscillator resistor ros c the oscillato r of ir3081a gene rate s a t r iangl e wavef o rm to synchronize the ph a s e i c s, an d t he swit chin g f r equ en c y of the ea ch p hase conve r ter e qual s the oscillato r fr e quen cy, whi c h is set by th e extern al resistor r os c according t o the curve in f i gure 1 3 of ir3081a data sheet. soft sta r t c a pacitor c ss/ del b e cau s e t h e cap a cit o r c ss / d e l prog ra ms fou r different time pa ra meters, i.e. soft s t art delay time, s o ft s t art time, over-cu r rent l a tch d e lay ti me, and po wer g ood dela y time, they sho u ld b e co nsid ere d tog e ther whil e choo sing c ss/del . the ss/del pin voltage control s the sl ew rate of th e co nv erte r o u tput voltage, as sho w n i n figure 10 of ir30 81a. after the ena b le pin volta ge ri se s a bov e 0.6v, there is a soft-start delay time t ss de l , after wh ich the erro r amplifier output i s rele ase d to allow t he s o ft s t art. the s o ft s t art time t ss r e p r es e n t s th e time d u r i n g wh ic h co n v e r ter vo ltage ris e s from z e ro to v o. t ss can be prog ra mmed by an external capa cito r, which i s determin ed b y equation (1 ). o ss o ss chg del ss v t v t i c * 10 * 70 * 6 / ? = = (1) once c ss/de l is cho s en, the soft start delay time t ssdel, the over-cu r rent fau l t latch delay time t ocdel , and the delay time t v ccpg from out put voltage (v o ) in re gula t ion to po we r goo d a r e fix ed a nd sh own in eq uation s (2), (3 ) and (4 ) re sp e c tively. 6 / / 10 * 70 3 . 1 * 3 . 1 * ? = = del ss chg del ss ssdel c i c t (2) 6 / / 10 * 40 115 . 0 * 115 . 0 * ? = = del ss ocdischg del ss ocdel c i c t (3) 6 / / 10 * 70 ) 3 . 1 735 . 3 ( * ) 3 . 1 065 . 0 8 . 3 ( * ? ? ? = ? ? ? = o del ss chg o del ss vccpg v c i v c t (4) vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac the sl ew rat e of vdac d o wn -sl ope s r down can be programm ed by t he external ca pa citor c vdac a s defined in equation (5 ), wh ere i sink is the sin k current of v d ac pin a s shown in figu re 1 5 of i r 3 081a data s heet. the resi st o r r vda c is u s e d to compen sate v d ac ci rcuit a nd i s d e te rmi ned by equat ion (6). the slew rate of v d ac up - slop e sr up i s p r op ortion al to that of v d ac do wn -sl o pe a nd i s giv en by eq uati on (7), whe r e i sour ce is the sou r ce curre n t of vdac pin as sh own in fig u re 15 of ir308 1 a data sheet . down sink vdac sr i c = (5) 2 15 10 2 . 3 5 . 0 vdac vdac c r ? ? + = (6) vdac source up c i sr = (7) page 1 4 of 33 1/ 3 1 /05
IR3086A ov er current setting res i stor r o c set the inductor dc resi stance is utilized t o sense the i nductor current. the copper wi re of inductor has a constant temperature coeffici ent of 3850 p p m/ c , and therefo r e the maximu m indu ctor d cr can b e ca lculate d from equation (8), wh ere r l_max and r l_room are the in du ctor dcr at maxi mum temp erature t l_max and ro om te mperatu r e t_ room res p ec tively. )] ( 10 * 3850 1 [ _ 6 _ _ room max l room l max l t t r r ? ? + ? = ? (8) the current sense amplifie r gain d e cre a s e s with tem peratu r e at th e rate of 14 7 0 ppm/ c, which com pen sate s pa rt of the induct o r dcr in cre a se. the p h a s e ic die te mperat ure i s only a cou p le of degree s cel s iu s highe r than the pcb tempe r a t ure du e to th e low th erm a l impeda nce o f mlpq pa ckage. the min i mum current sen s e amplif ier gai n at the maximum pha se ic temperature t ic_max is ca lculate d from equation (9). )] ( 10 * 1470 1 [ _ 6 _ _ room max ic room cs min cs t t g g ? ? ? ? = ? (9) the total in p u t offset voltage (v cs_tofst ) of curre n t sen s e am plifier in pha se ics i s th e su m of in put offset (v cs_ofs t) o f the amplifier itself and th at cr eate d by the amplifier input bias currents flo w in g throug h the current sen s e r e si st o r s r cs+ and r cs- . ? ? + + ? ? ? + = cs csin cs csin ofst cs tofst cs r i r i v v _ _ (10) the over cu rrent limit is se t by the external re si stor r o c set as defined in equ a tion (1 1), wh ere i limit is the requi re d over current l i mit. i o c set, the bia s curre n t of ocset pin, cha nge s with switchi n g frequ en cy setting resi st or r os c and i s dete r mined by the curve i n fig u re 1 4 of ir3 081a data s heet. k p is th e ratio of in d u ctor pea k current over averag e cu rrent in each p hase and i s calcul ated fro m equation (12). ocset min cs tofst cs p max l limit ocset i g v k r n i r / ] ) 1 ( [ _ _ _ ? + + ? ? = (11) n i f v l v v v k o sw i o o i p / ) 2 /( ) ( ? ? ? ? ? = (12) no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp a resi stor bet wee n fb pin and the conv erter out put i s u s ed to cre a te output vol t age offset v o_nl ofs t , which i s the differen c e b e t ween v dac voltage an d output voltag e at no lo ad con d it ion. a daptive volta ge po sitioni n g further lowe rs the co nverter voltag e by r o *i o, w here r o is the r e qu ir ed out put impeda nce of the conv erter. r fb is n o t on ly determin e d by i fb , the current flowi n g out of fb pin as sho w n i n figure 14 of ir30 81a data sheet, but al so affected by the a daptive volta ge p o sitio n in g resi stor r dr p and total i nput offset voltage of c u rre n t se ns e amplifiers. r fb and r drp a r e dete r mine d by (13) a n d (14) re spe c tively. max l fb o tofst cs nlofst o max l fb r i r n v v r r _ _ _ _ ? ? ? ? ? = (13) o min cs max l fb drp r n g r r r ? ? ? = _ _ (14) body braking tm rela ted resis t ors r bbfb and r bb drp the body brakin g tm durin g dynami c v i d can be di sabl ed by co nne cting bbfb pin to ground. if the feature i s enabl ed, re sistors r bbfb and r bbdrp are nee ded to resto r e t he feed ba ck voltage of the erro r am plifier afte r dynami c vid step do wn. usually r bbfb and r bbdrp are cho s en to match r fb a nd r drp res p ec tively . page 1 5 of 33 1/ 3 1 /05
IR3086A ir308 6a ex tern al co mpone n ts pwm ram p resis t or r pw mr mp and capa citor c p w mr mp pwm ram p is generated b y conne cting the resi stor r pwmrmp betwee n a volta ge sou r ce an d pwmrmp pin as well as th e capa ci tor c pwmrmp between p w mrmp a nd l g nd. choo se the de sire d pwm ram p magnitud e v ramp and t he cap a cit o r c pwmrmp in the ran ge of 1 00pf an d 47 0pf, and the n cal c ulate th e resi sto r r p w mrmp from equation (15 ) . to achieve feed -forward volt ag e mode co ntro l, the re si stor r ramp shou ld be co nne cted to the i n put of the conve r ter. )] ln( ) [ln( * * * pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r ? ? ? ? = (15) inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- the dc re sistance of the i ndu ctor i s util ized to se nse the indu cto r curre n t. usua lly the re sisto r r cs+ and capa citor c cs+ in pa ral l el with the in ducto r are ch ose n to match the time co nstant of the indu ct or, and therefore the voltage across the capa citor c cs+ represents the inducto r curre n t. if the two time consta nts are not the same , the ac comp one nt o f the capa cito r voltage i s d i fferent from t hat of the re al indu ctor cu rre nt. the tim e co nsta nt mismat ch doe s not affect the ave r a g e current sha r ing amon g th e multip le ph ase s , b u t affect the cu rre nt sign al ishare as wel l as the outp u t voltage duri n g the load current tran sie n t if adaptive voltage po sitioni ng is ad opted . measure the indu ctan ce l and the indu ctor dc re sist ance r l . pre-sele ct the ca pacito r c cs+ and calculate r cs+ as follows . + + = cs l cs c r l r (16) the bia s current flowing o u t of the non -inverting in pu t of the curre n t sen s e a m p lifier create s a voltage d r o p acro ss r cs+, which i s eq uivalent t o an in put offset voltage of the cu rr ent sense amplifie r. the off s et affects the accuracy of conve r ter cu rrent si gnal i s hare a s well a s the accura cy of the co nverte r output voltage if adaptiv e voltage positio ning i s adopte d . to redu ce t he offset voltage, a re sisto r r cs- sh ould be ad ded b e twe en the amplifie r i n verting input and the conve r ter o u tput . the res i stor r cs- is de termine d by the ratio of the bias curre n t from the non -invertin g input and the bias curre n t from the inverti ng input. + ? + ? ? = cs csin csin cs r i i r (17) if r cs- is not use d , r cs+ should be cho s en so that th e offset volta ge i s small e noug h. usu a l l y r cs+ sho u l d be le ss than 2 k ? an d therefo r e a large r c cs+ v a lue is n eed e d . ov er temperatur e settin g resis t ors r ho tset1 and r ho tset2 the th re shol d voltage of vrho t com parato r i s pro portion al to t he di e temp e r ature t j (o c) of ph ase ic. dete rmin e the relatio n sh ip between th e die tem perature of pha se ic an d the temperature of the po we r conve r ter accordin g to the po wer l o ss, p c b layo ut and ai rflo w etc, a nd th en ca lculate hotset th resh old voltag e co rrespon d i ng to the allowed maxi mum tempe r ature fro m equation (1 8). 241 . 1 * 10 * 73 . 4 3 + = ? j hotset t v (18) there a r e t w o ways to set the ove r tem peratu r e thre shol d, central setting and l o cal setting. in the cent ral setting, only one re si stor divide r is use d , and the setting vo ltage is co nn ected to ho tset pins of all the phase ics. to redu ce the inf l uen ce of noi se on the a c cura cy of over te mperatu r e setting, a 0.1 u f cap a cito r sho u ld be pla c ed n e xt to hotset p i n of ea ch ph ase i c . in the local setting, a re sisto r div i der p e r pha se is n eede d, and the settin g voltage is con n e c ted to ho tset pin of ea ch p hase. the 0. 1uf d e coupli ng cap a cito r i s n o t ne ce ssary. use vbias as th e referen c e voltage. if r hots et1 is pre-sel e cted, r ho tset2 can be ca lculate d as fol l ows. hotset bias hotset hotset hotset v v v r r ? ? = 1 2 (19) page 1 6 of 33 1/ 3 1 /05
IR3086A phase dela y timing resistors r phase1 and r phase2 the ph ase d e lay of the i n terleave d m u ltipha se con v erte r i s pro g ramm ed by the re sisto r divider con necte d at rmpin+ o r rmpin- dep endin g on wh ich slop e of the o scill ator ramp is u s ed for the p h a s e delay p r og ra mming of pha se ic, as sho w n in fig u re 3. if the up slop e is u s ed, rmpin+ pin of the p h a s e i c sho u ld be con n e c ted to rmpo ut pi n of the cont rol ic an d rmpin- pin sho u ld b e co nne cted to t he resi stor d i vi der. when rmpo ut v o ltage i s ab o v e the trip v o ltage at rmpin- pin, the pwm latch is set. gat e l beco m e s lo w, and gat e h become s high after the non-overl ap time. if d o w n s l o p e is us ed , rmpin - p i n o f th e p h a s e ic s h ou ld b e c o nn ec te d to r m pou t p i n o f the c o n t r o l ic and rmpin+ pi n sho u ld be co nne cted to t he re sisto r d i vider. whe n rmp o ut v o ltage i s bel ow th e tri p v o ltage at rmpin- pin, the pwm latch is set. gat e l beco m e s lo w, and gat e h become s high after the non-overl ap time. use vbias voltage a s the refere nce for t he re sisto r divider sin c e the oscillato r ramp m agn itude from co ntrol ic tracks vbias voltage. try to avoid both edge s of the oscilla tor ra mp for bette r noise immuni ty. determine the rati o of the progra mming resi st ors correspon di ng to the de sire d switchin g frequ en cie s and p h a s e n u mbe r s. if the re sisto r r phasex 1 is pre- sel e ct e d , t he re sist o r r phasex 2 is determine d as: phasex phasex phasex phasex ra r ra r ? ? = 1 1 2 (20) combined o v er tempera t ure an d pha se delay setting re sistor s r phase1 , r phase2 and r phase3 the over te mperature se tting re si stor divider can b e combi ned with the p h a s e delay re si stor divide r t o save one resi sto r per p hase. cal c ulate th e hotset th reshold volta ge v ho tset co rre sp ondi ng to the all o we d maxim u m tempe r at ure from equation (1 8). if the o v er temperature setting volt age is lowe r than the pha se d e lay setting voltage, vbias*ra phasex , conne ct rmpin+ or rmpin- pin betwe en r p h asex 1 and r phasex 2, an d conn ect hotset pin betwe en r phasex 2 and r p h asex 3 . pre-selec t r phase x 1 , ) 1 ( * ) ( 1 2 phasex bias phasex hotset bias phasex phasex ra v r v v ra r ? ? ? ? = (21) ) 1 ( * 1 3 phasex bias phasex hotset phasex ra v r v r ? ? = (22) if the over te mperature se tting voltage i s hi ghe r tha n the ph ase d e lay setting voltage, vbias*ra phasex , co nne ct hotset pin betwe en r ph asex 1 and r p h asex 2, and conne ct rmpi n+ o r rmpi n- between r p h asex 2 and r phasex 3 . p r e- sele ct r p h asex 1 , hotset bias phasex bias phasex hotset phasex v v r v ra v r ? ? ? ? = 1 2 ) ( (23) hotset bias phasex bias phasex phasex v v r v ra r ? ? = 1 3 * (24) boo t str a p capacitor c bst dep endin g o n the duty cy cle an d gate drive current of the pha se ic, a 0.1uf t o 1uf cap a ci tor is n eed ed for the bootstrap ci rcuit. deco upling capa citor s for phase ic 0.1uf-1uf de cou p ling cap a citors a r e re quire d at vcc and vccl pins of ph ase ics. page 1 7 of 33 1/ 3 1 /05
IR3086A voltage loop comp ensation the adaptive voltage posi tioning (avp) is usually adopted in the computer applications to i m prove the transient respon se and redu ce th e p o we r lo ss at heavy load. l i ke cu rre n t mode control, the ad aptive voltage p o sitio n ing loo p introdu ce s extra zero to th e voltage l o o p and splits t he do uble po les of th e p o w er sta ge, which ma ke th e voltage loop compe n s ation mu ch easi e r. re sist o r s r fb and r drp a r e cho s e n a c cording to eq uation s (13 ) and (14 ) , a n d the sele ction of comp en sa tion types depe nd s on the output ca pacito r s u s e d in the converter. fo r the applicatio ns using elect r olytic, polymer or al- polymer cap a citors a nd runnin g at lower freq uen cy, type ii compensation sho w n in fig u re 8(a ) is u s u a ll y enough . while for the appli c ations using only cerami c capacit o rs and runni ng at hi gher frequency, ty pe iii compensation sho w n in fig u re 8 ( b) i s preferred. for a ppli c atio ns whe r e av p is not requi red, the com pen sati on i s t he same a s f o r the reg u lar voltage mod e co ntrol. for co nverte r usi n g polymer, al -polym er, a nd ce ra mic ca pa citors, which hav e mu ch hig h e r es r ze ro freque ncy, type iii comp ensation is re quire d as sho w n in figu re 8(b ) with r dr p and c drp removed. rc p cc p 1 eaou t cc p rf b rd rp vo+ v drp vd ac + - eaou t fbfb cfb cdrp rcp eao u t ccp 1 cc p rfb rd rp vo+ v drp vd ac fb + - eaou t rfb 1 (a) t y pe ii com pens atio n (b) t y pe iii compens ation figure 8. voltage loop co mpen sation n e twork t y pe ii compensa tion fo r avp applic ations determine th e com pen sati on at no loa d , the wo rst ca se condi tio n . cho o se the crossove r fre q uen cy fc bet wee n 1/10 and 1/5 of th e swit chin g freque ncy pe r pha se. assu me the time con s tant of the re si stor a nd ca pa citor across the output in du ctors mat c he s t hat of the ind u ctor, and de termine r cp and c cp fro m equatio ns (25 ) a nd (26 ) , whe r e l e and c e are t he e quivalen t indu ctan ce of output i n d u ctors and t he e quivalen t cap a cita nce of outp u t ca pacito r s r e spec tively. 2 2 ) * * * 2 ( 1 * ) 2 ( c c o pwmrmp fb e e c cp r c f v v r c l f r + ? ? ? ? ? = (25) cp e e cp r c l c ? ? = 10 (26) c cp1 is optio nal and may be nee ded in some a ppli c a t ions to red u ce the jitter ca use d by the high frequ en cy noise. a cerami c ca pa citor bet wee n 10pf and 2 2 0pf is u s ually enoug h. t y pe iii com p ensation for avp applications determine th e com pen sati on at no lo a d , the wo rst ca se con d ition. assu me th e time co ns t ant of the re sisto r an d cap a cito r a c ross the outpu t inducto rs m a tche s th at of the ind u cto r , the cro s sover frequ en cy an d pha se ma rg in of th e voltage loop can b e estim a ted by equa tions (2 7) a n d (28), where r le is the eq uivalent re sist ance of indu ctor dcr. le fb cs e drp c r r g c r f ? ? = * * 2 1 (27) page 1 8 of 33 1/ 3 1 /05
IR3086A 180 ) 5 . 0 tan( 90 1 ? ? = a c (28) cho o se the d e sired cro s so ver frequ en cy fc aro und fc1 es timate d b y equation (2 7) o r ch oo se fc between 1/ 10 an d 1/5 of the swi t ching freq ue ncy p e r pha se, and sele ct the comp o n e n ts to en sure the sl ope of close loop gai n is -2 0db /dec aro und the crossove r freque ncy. cho o se re si stor r fb1 a c cordin g to eq uation (29 ) , and d e termi n e c fb an d r drp from equation s (3 0) and (3 1). fb fb r r 2 1 1 = to fb fb r r 3 2 1 = (29) 1 4 1 fb c fb r f c ? ? = (30) drp fb fb fb drp r c r r c ? + = ) ( 1 (31) r cp an d c cp have limite d effect on the cro s sove r fre quen cy, and are used only to fine tun e t he cro s sove r freque ncy and tran sie n t load re sp on se. determi ne r cp and c cp from equatio ns (3 2) a nd (33). o pwmrmp fb e e c cp v v r c l f r ? ? ? ? ? = 2 ) 2 ( (32) cp e e cp r c l c ? ? = 10 (33) c cp1 is optio nal and may be nee ded in some a ppli c a t ions to red u ce the jitter ca use d by the high frequ en cy noise. a cerami c ca pa citor bet wee n 10pf and 2 2 0pf is u s ually enoug h. t y pe iii com p ensation for non-avp applications re sist o r r fb is cho s en a c cordin g to eq u a tions (1 3), a nd resi stor r drp and capa citor c drp a r e not n eed ed. cho o se the cro s sover frequ en cy fc betwe en 1/1 0 and 1/5 of th e sw itching f r eque ncy p e r pha se and se lect the de sired p h a s e margi n  c. calcul ate k factor from equa tion (34 ) , and determi n e the com pone nt values b a sed on equation s (3 5) t o (39 ) , )] 5 . 1 180 ( 4 tan[ + ? = c k (34) k v v f c l r r o pwmrmp c e e fb cp ? ? ? ? ? ? = 2 ) 2 ( (35) cp c cp r f k c ? ? = 2 (36) cp c cp r k f c ? ? ? = 2 1 1 (37) fb c fb r f k c ? ? = 2 (38) fb c fb c k f r ? ? ? = 2 1 1 (39) page 1 9 of 33 1/ 3 1 /05
IR3086A current s h are loop compens a tion the crossove r fre que ncy of the cu rrent s hare loo p sh o u ld b e at lea s t one de cad e lowe r th an th at of the volta ge lo op in orde r to eli m inate the in teractio n b e twee n the two loop s. a ca p a citor fro m s c omp to g r o und i s usuall y enou gh for the sha r e loop com p ensation. ch oose the cro s sover freq u ency of current sha r e lo op (f ci ) based on the cro s sove r fre quen cy of voltage loop (f c), and dete r min e the c sco m p , 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c ? ? + = (40) whe r e f mi is the pwm gai n in the curre n t share loop , ) ( * ) ( * * * dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f ? ? ? = ( 41) page 2 0 of 33 1/ 3 1 /05
IR3086A design e x ample 1 - vrm 10 2u conve r ter specifications input voltage : v i =12 v dac voltag e: v dac =1.35 v no lo ad out put voltage o ffset: v o_nlof st =20 mv output current: i o =105 a dc maximum output current: i oma x =120 a dc output imped ance: r o =0. 9 1 m ? vcc ready to vcc po wer good delay: t vccpg =0- 1 0 m s soft start tim e : t ss =2 ms over current delay: t ocde l < 0.5ms dynami c vid do wn-sl ope slew rate: s r down = 2 .5mv/us over tem perature th re sh old: t pcb =11 5 oc power stage phase num b er: n=6 switchin g fre quen cy: f sw =400 khz output indu ctors: l = 22 0 n h , r l =0.47 m ? output ca pa citors: al-pol ymer, c=560 uf, r c = 7m ? , numbe r cn =10 ir308 1a ex tern al co mpone n ts oscillator resistor ros c once the swi t ching freq ue ncy i s cho s e n , r os c ca n be d e termin e d from the curve in figu re 13 of ir3 0 81a data sheet. for switchi ng freq uen cy of 400 khz pe r pha se, choo se r os c =30.1 k ? soft sta r t c a pacitor c ss/ del determine the s o ft s t art capac itor fr om t he req u ired soft start time. uf v t i c o ss chg del ss 1 . 0 10 * 20 35 . 1 10 * 2 10 * 70 3 3 6 /     the s o ft s t art delay time is ms i c t chg del ss ssdel 86 . 1 10 * 70 3 . 1 10 * 1 . 0 3 . 1 6 6 /   the po we r go od delay time is ms i v c t chg o del ss vccpg 58 . 1 10 * 70 ) 3 . 1 33 . 1 735 . 3 ( * 10 * 1 . 0 ) 3 . 1 735 . 3 ( * 6 6 /       over current delay time is ms i c t ocdischg del ss ocdel 29 . 0 10 * 40 115 . 0 * 10 * 1 . 0 115 . 0 * 6 6 /   page 2 1 of 33 1/ 3 1 /05
IR3086A vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac from fig u re 15 of ir3081 a data sheet, the sink cu rrent of vdac pin corre s po nding to 400 khz (r os c =30 . 1k ? ) i s 76ua. cal c ul ate the vdac down - sl ope sle w -rate pro g rammi ng ca pacito r from t he req u ired d o wn -sl ope sle w rate. nf sr i c down sink vdac 4 . 30 10 / 10 * 5 . 2 10 * 76 6 3 6    , choo se c vd ac =33n f cal c ulate the prog ram m ing resi stor. :      5 . 3 ) 10 * 33 ( 10 * 2 . 3 5 . 0 10 * 2 . 3 5 . 0 2 9 15 2 15 vdac vdac c r from fig u re 15 or ir3 081 a data sheet , the source current of vdac pin is 1 10u a. the vdac up-sl ope sle w rate i s us mv c i sr vdac source up / 3 . 3 10 * 33 10 * 110 9 6   ov er current setting res i stor r o c set the room te mperature is 25oc an d the target p c b t e mpe r at ure i s 1 00 o c . th e pha se ic di e tempe r atu r e is abo ut 1 oc high er tha n that of phase ic, and the indu ct or temp eratu r e is clo s e to pcb temperature. cal c ulate ind u ctor dc re si stan ce at 100 oc, :        m t t r r room max l room l max l 61 . 0 )] 25 100 ( 10 * 3850 1 [ 10 * 47 . 0 )] ( 10 * 3850 1 [ 6 3 _ 6 _ _ the cu rrent sense amplifie r gain is 3 4 at 25oc, and its gain at 101o c is calculate d as, 2 . 30 )] 25 101 ( 10 * 1470 1 [ 34 )] ( 10 * 1470 1 [ 6 _ 6 _ _       room max ic room cs min cs t t g g set the over curre n t limit a t 135a. fro m figure 14 of ir308 1a dat a sheet, the bias cu rrent of ocset pi n (i o c set ) is 41ua with r os c =30.1 k ? . the total curre n t sen s e amplifier in put o ffset voltage is 0.55 mv, which in clud es the offset created by the curren t sense ampli f ier input re si stor mi smat ch. cal c ulate con s tant k p, the ratio of induct o r pea k curre n t ov er avera ge cu rrent in each pha se, 3 . 0 6 / 135 ) 2 10 * 400 12 10 * 220 /( 33 . 1 ) 33 . 1 12 ( / ) 2 /( ) ( 3 9    n i f v l v v v k limit sw i o o i p ocset min cs tofst cs p max l limit ocset i g v k r n r r / ] ) 1 ( [ _ _ _   :     k 3 . 13 ) 10 * 41 /( 2 . 30 ) 10 * 55 . 0 3 . 1 10 * 61 . 0 6 135 ( 6 3 3 no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp from fig u re 14 of ir308 1 a data sheet , the bias cu rrent of fb pin is 41ua with r os c =30.1 k ? . :         365 10 * 61 . 0 10 * 41 10 * 91 . 0 6 10 * 55 . 0 10 * 20 10 * 61 . 0 3 6 3 3 3 3 _ _ _ _ max l fb o tofst cs nlofst o max l fb r i r n v v r r :   k r n g r r r o min cs max l fb drp 21 . 1 10 * 91 . 0 6 2 . 30 10 * 61 . 0 365 3 3 _ _ page 2 2 of 33 1/ 3 1 /05
IR3086A body braking tm rela ted resis t ors r bbfb and r bb drp n/a. the bod y brakin g du ri ng dynami c vid is disa ble d . ir308 1a ex tern al co mpone n ts pwm ram p resis t or r pw mr mp and capa citor c p w mr mp set pwm ramp magnitude v pwmrmp =0.8v. choo se 220 pf for pwm ramp capa citor c pw mrmp , and calcul ate the resi st o r r pw mrmp , )] ln( ) [ln( pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r ? ? ? ? ? ? ? = ? = ? ? ? ? ? ? ? = ? k 1 . 16 )] 8 . 0 35 . 1 12 ln( ) 35 . 1 12 [ln( 10 * 220 10 * 400 12 33 . 1 12 3 , choo se r p w mrmp =16.2 k ? inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- cho o s e c cs+ =47 n f, and calcul ate r cs+, ? = = = ? ? ? + + k c r l r cs l cs 0 . 10 10 * 47 ) 10 * 47 . 0 /( 10 * 220 9 3 9 the bia s cu rrents of csin+ and cs in- are 0.25 ua a nd 0.4ua re spec tively. cal c ulate resi sto r r cs- , ? = ? = ? = + ? k r r cs cs 2 . 6 10 * 0 . 10 4 . 0 25 . 0 4 . 0 25 . 0 3 , choo se r cs- =6. 1 9 k ? ov er temperatur e settin g resis t ors r ho tset1 and r ho tset2 use ce ntral o v er-temp e rature setting a nd set the te mperatur e th resh old at 11 5 oc, whi c h co rre sp ond s to the ic die temperature of 116 oc. ca lculate the hotset thre shold voltage corre s p ondin g to the temperatu r e thre shold s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 * 10 * 73 . 4 3 3 = + ? = + = ? ? p r e- sele ct r h o tset1 =10.0 k ? , ? = ? ? = ? ? = k v v v r r hotset bias hotset hotset hotset 57 . 3 79 . 1 8 . 6 79 . 1 10 * 10 3 1 2 phase dela y timing resistors r phase1 and r phase2 use ce ntral o v er-temp e rature setting a nd set the te mperatur e th resh old at 11 5 oc, whi c h co rre sp ond s to the ic die temperature of 116 oc. ca lculate the hotset thre shold voltage corre s p ondin g to the temperatu r e thre shold s . the p h a s e d e lay re si stor ratio s fo r p hases 1 to 6 at 4 0 0 k hz of switching frequ en cie s are ra phas e1 = 0 .628, ra phase2 =0. 415, ra phas e3 = 0 .202, ra phase4 = 0 .246, ra phase5 =0.44 1 an d ra phase6 =0.6 37 sta r ting f r om do wn- slop e. pre-sel e ct r phase11 =r phase21 =r phase31 =r phase41 =r ph ase51 = r pha se61 =10 k ? , ? = ? ? = ? ? = k r ra ra r phase phase phase phase 9 . 16 10 * 10 628 . 0 1 628 . 0 1 3 11 1 1 12 r phase22 =7. 15k  , r phas e32 =2. 5 5 k  , r phase42 =3. 24k  , p phase52 =7. 8 7 k  , r phase62 = 17.4 k  page 2 3 of 33 1/ 3 1 /05
IR3086A boo t str a p capacitor c bst cho o s e c bst =0. 1 u f deco upling capa citor s for phase ic and po w e r s t age cho o s e c vcc = 0 .1uf, c vccl =0.1uf voltage loop comp ensation type ii comp ensation i s u s ed fo r the co nverter with al-pol ymer o u tput ca pa citors. cho o se the cro s sover freque ncy fc=4 0khz, wh ich is 1/1 0 of the swit chin g freque ncy pe r phase, and d e termin e rcp and c cp . ? = + ? ? ? ? ? ? ? ? ? ? ? = + ? ? ? ? ? = ? ? ? ? ? k r c f v v r c l f r c c o ramp fb e e c cp 0 . 2 ) 10 * 7 * 10 * 560 * 10 * 40 * 2 ( 1 * ) 10 20 35 . 1 ( 8 . 0 365 ) 10 10 560 ( ) 6 / 10 220 ( ) 10 40 2 ( ) * * * 2 ( 1 * ) 2 ( 2 3 6 3 3 6 9 2 3 2 2 nf r c l c cp e e cp 71 10 0 . 2 ) 10 * 10 560 ( ) 6 / 10 220 ( 10 10 3 6 9 = ? ? ? ? ? = ? ? = ? ? , choo se c cp =68 n f cho o s e c cp1 =47 p f to red u ce hi gh freq uen cy noise. current s h are loop compens a tion the cro s sove r frequ en cy of the current sha r e loo p f ci shoul d be at least one d e c ad e lower th an that of the voltage loop f c . choo se the cro s so ver frequ en cy of current sh are loo p f ci =4 kh z , a nd calculate c sco m p , 011 . 0 ) 35 . 1 12 ( * ) 35 . 1 8 . 0 12 ( 8 . 0 * 10 * 400 * 10 * 220 * 10 * 2 . 16 ) ( * ) ( * * * 3 12 3 = ? ? ? = ? ? ? = ? dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c ? ? + = 6 3 4 4 6 3 3 3 10 * 05 . 1 * 10 * 4 2 ) 10 * 1 . 9 * 105 33 . 1 ( 011 . 0 * ] 105 ) 10 * 1 . 9 * 105 33 . 1 ( * 10 * 10 * 560 * 10 * 4 * 2 1 [ * ) 6 10 * 47 . 0 ( * 34 * 105 * 12 * 10 * 2 . 16 * 65 . 0 ? ? ? ? + = ? ? ? ? nf 4 . 31 = cho o s e c sc o m p =33nf. page 2 4 of 33 1/ 3 1 /05
IR3086A design example 2 - evrd 10 high frequency all-ce ramic converte r specifications input voltage : v i =12 v dac voltag e: v dac = 1 .3 v no lo ad out put voltage o ffset: v o_nlof st =20 mv output current: i o =105 a dc maximum output current: i oma x =120 a dc output imped ance: r o =0. 9 1 m ? vcc ready to vcc po wer good delay: t vccpg =0- 1 0 m s soft start tim e : t ss =2. 9 ms over current delay: t ocde l < 0.5ms dynami c vid do wn-sl ope slew rate: s r down = 2 .5mv/us over tem perature th re sh old: t pcb =11 5 oc power stage phase num b er: n=6 switchin g fre quen cy: f sw =800 khz output indu ctors: l = 10 0 n h , r l =0.5 m ? output ca pa citors: ce ram i c, c=22uf, r c = 2m ? , nu mber cn =62 ir308 1a ex tern al co mpone n ts oscillator resistor ros c once the swi t ching freq ue ncy i s cho s e n , r os c ca n be d e termin e d from the curve in figu re 13 of ir3 0 81a data sheet. for switchi ng freq uen cy of 800 khz pe r pha se, choo se r os c =13.3 k ? soft sta r t c a pacitor c ss/ del determine the s o ft s t art capac itor fr om t he req u ired soft start time. uf v t i c o ss chg del ss 16 . 0 10 * 20 3 . 1 10 * 3 10 * 70 3 3 6 /     , choo se c ss/ del =0.15uf the s o ft s t art delay time is ms i c t chg del ss ssdel 8 . 2 10 * 70 3 . 1 10 * 15 . 0 3 . 1 6 6 /   the po we r go od delay time is ms i v c t chg o del ss vccpg 4 . 2 10 * 70 ) 3 . 1 33 . 1 735 . 3 ( * 10 * 15 . 0 ) 3 . 1 735 . 3 ( * 6 6 /       over current delay time is ms i c t ocdischg del ss ocdel 43 . 0 10 * 40 115 . 0 * 10 * 15 . 0 115 . 0 * 6 6 /   vdac sle w rate progra mming capa citor c vdac and re sisto r r vdac from fig u re 15 of ir3081 a data sheet, the sink cu rrent of vdac pin corre s po nding to 800 khz (r os c =13 . 3k ? ) i s 170ua. cal c u l ate the vdac do wn-slo pe slew-rate pro g rammi ng ca pacito r from t he req u ired d o wn -sl ope sle w rate. page 2 5 of 33 1/ 3 1 /05
IR3086A nf sr i c down sink vdac 68 10 / 10 * 5 . 2 10 * 170 6 3 6 = = = ? ? ? cal c ulate the prog ram m ing resi stor. ? = + = + = ? ? ? 2 . 1 ) 10 * 68 ( 10 * 2 . 3 5 . 0 10 * 2 . 3 5 . 0 2 9 15 2 15 vdac vdac c r from fig u re 15 of ir308 1 a data sheet , the source current of vdac pin is 2 50u a. the vdac up-sl ope sle w rate i s us mv c i sr vdac source up / 7 . 3 10 * 68 10 * 250 9 6 = = = ? ? ov er current setting res i stor r o c set the room te mperature is 25oc an d the target p c b t e mpe r at ure i s 1 00 o c . th e pha se ic di e tempe r atu r e is abo ut 1 oc high er tha n that of phase ic, and the indu ct or temp eratu r e is clo s e to pcb temperature. cal c ulate ind u ctor dc re si stan ce at 100 oc, ? = ? ? + ? = ? ? + ? = ? ? ? m t t r r room max l room l max l 64 . 0 )] 25 100 ( 10 * 3850 1 [ 10 * 5 . 0 )] ( 10 * 3850 1 [ 6 3 _ 6 _ _ the cu rrent sense amplifie r gain is 3 4 at 25oc, and its gain at 101o c is calculate d as, 2 . 30 )] 25 101 ( 10 * 1470 1 [ 34 )] ( 10 * 1470 1 [ 6 _ 6 _ _ = ? ? ? ? = ? ? ? ? = ? ? room max ic room cs min cs t t g g set the over curre n t limit a t 135a. fro m figure 14 of ir308 1a dat a sheet, the bias cu rrent of ocset pi n (i o c set ) is 90ua with r os c =13.3 k  . the total curre n t sen s e amplifier in put o ffset voltage is 0.55 mv, which in clud es the offset created by the curren t sense ampli f ier input re si stor mi smat ch. cal c ulate con s tant k p, the ratio of induct o r pea k curre n t ov er avera ge cu rrent in each pha se, 32 . 0 6 / 135 ) 2 10 * 800 12 10 * 100 /( 28 . 1 ) 28 . 1 12 ( / ) 2 /( ) ( 3 9 = ? ? ? ? ? = ? ? ? ? ? = ? n i f v l v v v k limit sw i o o i p ocset min cs tofst cs p max l limit ocset i g v k r n r r / ] ) 1 ( [ _ _ _ ? + + ? ? = ? = + ? ? = ? ? ? k 34 . 6 ) 10 * 90 /( 2 . 30 * ) 10 * 55 . 0 32 . 1 10 * 64 . 0 6 135 ( 6 3 3 no load output voltag e setting resi stor r fb and adap tiv e voltage positio n ing resis t o r r drp from fig u re 14 of ir308 1 a data sheet , the bias cu rrent of fb pin is 90ua with r os c =13.3 k  . ? = ? ? ? ? = ? ? ? ? ? = ? ? ? ? ? ? 162 10 * 64 . 0 * 10 * 90 10 * 91 . 0 6 10 * 55 . 0 10 * 20 10 * 64 . 0 3 6 3 3 3 3 _ _ _ _ max l fb o tofst cs nlofst o max l fb r i r n v v r r ? = ? ? = ? ? ? = ? ? 576 10 * 91 . 0 6 2 . 30 * 10 * 64 . 0 162 3 3 _ _ o min cs max l fb drp r n g r r r body braking tm rela ted resis t ors r bbfb and r bb drp n/a. the bod y brakin g du ri ng dynami c vid is disa ble d . page 2 6 of 33 1/ 3 1 /05
IR3086A ir308 6a ex tern al co mpone n ts pwm ram p resis t or r pw mr mp and capa citor c p w mr mp set pwm ra mp magnitu d e v pwmrmp =0.75v. choo se 100pf fo r pwm ram p capa citor c p w mrmp , and ca lculate the resi st o r r pw mrmp , )] ln( ) [ln( * * * pwmrmp dac in dac in pwmrmp sw in o pwmrmp v v v v v c f v v r ? ? ? ? = ? = ? ? ? ? ? ? ? ? k 2 . 18 )] 75 . 0 3 . 1 12 ln( ) 3 . 1 12 [ln( 12 10 * 100 3 10 * 800 12 28 . 1 = inductor cur r ent sen s ing capaci tor c cs+ and resi stors r cs+ a nd r cs- cho o se 47nf for cap a cito r c cs+, and cal c ulate r cs+, ? = = = ? ? ? + + k c r l r cs l cs 22 . 4 10 * 47 ) 10 * 5 . 0 /( 10 * 100 9 3 9 the bia s cu rrents of csin+ and cs in- are 0.25 ua a nd 0.4ua re spec tively. cal c ulate resi sto r r cs- , ? = ? = ? = + ? k r r cs cs 61 . 2 10 * 22 . 4 4 . 0 25 . 0 4 . 0 25 . 0 3 combined o v er tempera t ure an d pha se delay setting re sistor s r phasex1 , r phasex2 and r phasex3 the over tem peratu r e setting re sisto r di vider is co mb ined wi th the pha se delay resi stor divide r. set the temperatu r e threshold at 115 o c , whi c h co rrespon d s to the ic di e te mpe r ature of 116 o c , and cal c ulate the hotse t thre shol d voltage co rre s po ndin g to the tempe r atu r e thre sh old s . v t v j hotset 79 . 1 241 . 1 116 10 * 73 . 4 241 . 1 10 * 73 . 4 3 3 = + ? = + ? = ? ? the p h a s e d e lay re si stor ratio s fo r p hases 1 to 6 at 8 0 0 k hz of switching frequ en cie s are ra phas e1 = 0 .665, ra phase2 =0. 432, ra phas e3 = 0 .198, ra phase4 = 0 .206, ra phase5 =0.40 1 an d ra phase6 =0.5 97 sta r ting f r om do wn- slop e. the over te mperature se tting voltage of phases 1, 2, 5, and 6 is lowe r tha n the pha se delay setting voltage, vbias*ra phasex . pre-selec t r phase11 =10 k  , ? = ? ? ? ? ? = ? ? ? ? = k ra v r v v ra r phasex bias phasex hotset bias phasex phasex 1 . 12 ) 665 . 0 1 ( 8 . 6 10 * 10 ) 79 . 1 8 . 6 665 . 0 ( ) 1 ( * ) ( 3 1 2 ? = ? ? = ? ? = k ra v r v r phasex bias phasex hotset phasex 87 . 7 ) 665 . 0 1 ( * 8 . 6 10 * 1 . 12 79 . 1 ) 1 ( * 3 1 3 r phase21 = 10k  , r phase22 =2. 9 4 k  , r p h ase23 =4. 6 4 k  r phase51 = 10k  , r phase52 =2. 3 2 k  , r p h ase53 =4. 4 2 k  r phase61 = 10k  , r phase62 =8. 2 5 k  , r p h ase63 =6. 4 9 k  the over tem peratu r e setting voltage of phase s 3 a n d 4 is highe r than the pha se delay setting voltage, vbias*ra phasex . pre-selec t r phasex1 =10 k  , ? = ? ? ? ? = ? ? ? ? = 887 79 . 1 8 . 6 10 * 10 ) 8 . 6 198 . 0 79 . 1 ( ) ( 3 31 3 32 hotset bias phase bias phase hotset phase v v r v ra v r ? = ? ? ? = ? ? = k v v r v ra r hotset bias phase bias phase phase 67 . 2 79 . 1 8 . 6 10 * 10 8 . 6 198 . 0 * 3 31 3 33 page 2 7 of 33 1/ 3 1 /05
IR3086A r phase41 = 10k ? , r phase42 =76 8 ? , r pha se43 =2. 8 0 k ? boo t str a p capacitor c bst cho o s e c bst =0. 1 u f deco upling capa citor s for phase ic and po w e r s t age cho o s e c vcc = 0 .1uf, c vccl =0.1uf voltage loop comp ensation type iii compensation is used for the converter with only cerami c output capacitors. the crossover frequency and pha se ma rgin of the voltage loop can be estimated a s follows. khz r r g c r f le fb cs e drp c 146 ) 6 / 10 * 5 . 0 ( 162 34 ) 10 * 22 62 ( 2 576 2 3 6 1   s s q  63 180 ) 5 . 0 tan( 90 1 s t a c cho o s e : 110 162 3 2 3 2 1 fb fb r r cho o se the d e sired cro s so ver frequ en cy fc (=1 4 0 k hz) aroun d fc1 e s timated ab o v e, and cal c ul ate nf r f c fb c fb 2 . 5 110 10 * 140 4 1 4 1 3 1 s s , choo se c fb =5. 6 n f nf r c r r c drp fb fb fb drp 7 . 2 576 10 * 6 . 5 ) 110 162 ( ) ( 9 1    :     k v v r c l f r o ramp fb e e c cp 65 . 1 10 * 20 3 . 1 75 . 0 * 162 ) 62 10 * 22 ( ) 6 / 10 * 100 ( ) 10 * 140 2 ( ) 2 ( 3 6 9 2 3 2 s s nf r c l c cp e e cp 27 10 65 . 1 ) 62 * 10 * 22 ( ) 6 / 10 * 100 ( 10 10 3 6 9   cho o s e c cp1 =47 p f to red u ce hi gh freq uen cy noise. current s h are loop compens a tion the cro s sove r frequ en cy of the current sha r e loo p f ci shoul d be at least one d e c ad e lower th an that of the voltage loop f c . choo se the cro s so ver frequ en cy of current sh are loo p f ci =3 . 5 kh z , a nd ca lculate c sco m p , 011 . 0 ) 3 . 1 12 ( * ) 3 . 1 75 . 0 12 ( 75 . 0 * 10 * 800 * 10 * 100 * 10 * 2 . 18 ) ( * ) ( * * * 3 12 3        dac i dac pwmrmp i pwmrmp sw pwmrmp pwmrmp mi v v v v v v f c r f 6 _ 10 * 05 . 1 * 2 * )] ( * * * 2 1 [ * * * * * * 65 . 0 ci o mi o o e ci le room cs o i pwmrmp scomp f v f i v c f r g i v r c  s s 6 4 4 6 3 3 10 * 05 . 1 * 3500 2 ) 10 * 1 . 9 * 105 33 . 1 ( 011 . 0 * ] 105 ) 10 * 1 . 9 * 105 33 . 1 ( * 62 * 10 * 22 * 3500 * 2 1 [ * ) 6 10 * 5 . 0 ( * 34 * 105 * 12 * 10 * 2 . 18 * 65 . 0        s s nf 6 . 20 cho o s e c sc o m p =22nf page 2 8 of 33 1/ 3 1 /05
IR3086A layout guidelines the followi ng layout guidel ines a r e reco mmend ed to redu ce the p a ra sitic ind u ctance a nd re sista n ce of the pcb layout, therefore minimi zin g the noise couple d to the ic. ? dedi cate at least o ne mi d d le laye r for a groun d pla ne, whi c h is t hen split into sign al g r oun d plane (l gnd) an d power g r ou nd plane (pg n d). ? con n e c t pgnd to lg nd pins of each phase ic to t he grou nd ta b, which is tied to lgnd and pgnd pl ane s r e spec tively t h r o ugh vias . ? in orde r to re duce the noi se cou p led to scomp pin of phase ic, use a d edi cat ed wire to co nne ct the cap a citor c sco m p dire ctly to lgnd pin. ho weve r, co nne ct pwm ramp ca pacito r c pwm r mp , phase d e lay pro g ram m ing resi st o r r pha se2 or r phas e3, decou plin g cap a cito r c vcc to lgnd plane throug h vias. ? place curre n t sen s e resi st ors and cap a c itors (r cs+ , r cs- , c cs+ , and c cs- ) close to p h a s e ic. use kelvin con n e c tion fo r the indu ctor current sen s e wire s, but s eparate the two wi re s by grou nd polyg on. the wi re from th e in du c t or te r m ina l to rc s- s h o u l d no t cr os s o v er t he fa st tran sition nod es, i.e. swit chin g nod es, gate drive outputs a nd b ootstra p nod e s . ? place the de couplin g cap a c itors c vcc a nd c vccl a s clo s e as po ssible to vcc a nd v c cl pi n s of the pha se ic r e spec tively. ? ? ? place the p h a se ic as clo s e a s po ssibl e to the mos f et s to re du ce the p a ra sit i c re si stan ce and ind u cta n ce of the gate drive paths. place th e in p u t ce rami c ca pacito r s cl ose to the drain of top m o sf et and the source of bott o m mosfet . use combi nation of different pa ckage s of ce ramic capa cito rs. there a r e t w o switching p o we r lo op s. one l oop in cl ude s the input c a pac i tors , top m o sfet, indu ctor, o u tput cap a cito rs an d the l oad; a nother loo p consi s ts of b o ttom mosfe t , indu ctor , o u tput capa cit o rs an d th e l oad. route th e switching po wer paths usi ng wide and sh o r t trac es or p o lygon s; use multip le vias for conn ectio n s betwe en laye rs. lg n d vcc vccl ea in sco m p ga te l ga teh pg nd csi n + csi n - daci n biasin to s i g n a l b u s is h a re to i n d u ctor to pg nd plan e to l g nd pl an e c vc c c vc cl to v i n to l g nd pla n e r pw m r mp c pw m r m p c sc o m p r bi asin r cs + d bs t vcch c bs t to g a te dr iv e vol t age r pha se2 r ph ase1 vrhot hot s e t rm p i n - rm p i n + phsflt eai n p w mr mp to t o p m o sf et pgnd pl a n e lgn d pl a n e to s w it ching node gro u nd pol y gon c cs + r cs - c cs- g r ound po l y gon to l g nd pla n e t o b o ttom m o sf et lg n d vcc vccl ea in sco m p ga te l ga teh pg nd csi n + csi n - daci n biasin to s i g n a l b u s is h a re to i n d u ctor to pg nd plan e to l g nd pl an e c vc c c vc cl to v i n to l g nd pla n e r pw m r mp c pw m r m p c sc o m p r bi asin r cs + d bs t vcch c bs t to g a te dr iv e vol t age r pha se2 r ph ase1 vrhot hot s e t rm p i n - rm p i n + phsflt eai n p w mr mp to t o p m o sf et pgnd pl a n e lgn d pl a n e to s w it ching node gro u nd pol y gon c cs + r cs - c cs- g r ound po l y gon to l g nd pla n e t o b o ttom m o sf et page 2 9 of 33 1/ 3 1 /05
IR3086A pcb me tal a nd compon e n t placemen t ? lead lan d wi dth shoul d b e equ al to no minal part lea d wi dth. the minimum lea d to l ead spa c ing shoul d b e ? 0.2mm to minimiz e shorting. ? lead l and l e ngth shoul d be eq ual to maximum pa rt lead l ength + 0.2 m m o u tboard exte nsio n + 0.05 mm inboa rd exte nsio n. the outboa rd ext ensi on en su re s a la rge a nd inspe c tabl e toe fillet, and the inbo a r d extension will accommodat e any part mi salignment and ensure a fillet. ? cente r pad l and length a nd width sho u ld be equ al to maximum part pad len g t h and width. however, the minimum met a l to m e tal spaci ng sh oul d be ? 0.17 mm for 2 oz. co ppe r ( ? 0 . 1mm for 1 o z . copp er an d ? 0.23mm for 3 oz. cop per) ? four 0.3m m diamete r vias shall be pla c ed in the pa d land sp ace d at 1.2mm, and co nne cte d to ground t o minimize the noise effect o n the ic, and to transfe r he at to the pcb. page 3 0 of 33 1/ 3 1 /05
IR3086A solder resis t ? the solde r re sist sho u ld b e pulle d awa y from the m e tal lead la n d s by a mi ni mum of 0.06 mm. the sol der resi st mi s-ali gnment i s a maximum of 0.05mm and i t is re comm e nded that the lead lan d s are all no n sol der mask defined (nsmd). theref ore pulling the s/r 0.06mm will al ways ensure nsmd pads. ? the minimu m solde r re si st width is 0.1 3 mm, therefore it is reco m m ende d that the sold er resist is co mplet e ly remove d fro m betwee n the lead lan d s f o rmin g a sin g l e openi ng for each ?group ? of lead land s. ? at the inside corne r of the sold er re sist whe r e the l e ad lan d grou ps me et, it is re comme nd ed to p r ovide a fillet so a solder resi st widt h of ? 0.17m m remain s. ? the la nd p a d sho u ld b e s o lder ma sk defined (smd), wi th a mi nimum ove r lap of the solde r re sist o n to t he cop per of 0.0 6 mm to acco mmodate sol der resi st mi s-align m ent. in 0.5mm pitch ca se s it is a llowa ble to ha ve the sold er resist openi ng fo r the land pa d to be smalle r than the part pad. ? ensu re that the sol d e r re si st in-b etwe en the lead lan d s and th e pad land is ? 0.1 5 mm due to t he high aspe ct ratio of the so lder resi st stri p sep a ra tin g the lead la nd s from the pad land. ? the 4 vias in the land pa d sho u ld be tented with so l der re si st 0.4mm diamet er, or 0.1mm larger tha n the diamete r of the via. page 3 1 of 33 1/ 3 1 /05
IR3086A stencil de sign ? the sten cil apertu re s fo r the l ead la nds shoul d be a p p r oxim ately 80% of the are a of the l ead la nds. reduci ng the amount of solder deposit ed will minimi ze the occurrence of le ad shorts. since for 0.5mm pit c h device s th e l ead s a r e onl y 0.25mm wi de, the ste n cil ape rtures should not be made na rrower; o peni ngs in sten cils < 0.2 5 mm wid e are difficult to maintain repe atable solde r relea s e. ? the sten cil le ad land ap ert u re s sh ould t herefo r e b e shorten ed in l ength by 80 % and cente r ed on the lea d land. ? the la nd pad ape rture sho u ld b e stripe d with 0.25 m m wid e o peni ngs an d spa c es to de po sit app roximatel y 50% area of solder on the center pad. if too much solder is deposited on the center pad the part will float and the lea d land s will be o pen. ? the maximu m length a n d width of the l and p ad ste n c il ap ertu re should b e eq u a l to the sol d er resi st ope n i ng minus an an nular 0.2mm pull ba ck to decrea s e the inci d e n c e of sho r ting th e cente r la nd t o the le ad la nds whe n the part is pushed int o the sold er p a ste. page 3 2 of 33 1/ 3 1 /05
IR3086A package information 20l mlpq (4 x 4 mm bod y ) ? ja = 32 o c/w, jc = 3 o c/ w data an d sp e c ificatio ns su bject to ch an ge witho u t no tice. this p r od uct has b een d e signed a nd qu alified for the con s um er m a rket. qualification standards ca n be found o n ir?s we b sit e . ir wo rl d h e adq u a r t ers: 233 kansas st., el segundo, calif orni a 90245, usa te l: (310) 252-7105 tac fax: (31 0 ) 252 -7 903 vis i t us at www.irf.c om for s a les contac t information . ww w.irf.co m page 3 3 of 33 1/ 3 1 /05


▲Up To Search▲   

 
Price & Availability of IR3086A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X